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Abstract
About 150 years ago, in summer 1854, Berhard Riemann held his

habilitation lecture to Carl Friedrich Gauss in G�ottingen to become a
professor and built up a scienti�c basis to combine Minkowski space and
electromagnetism, called Riemannian Geometry. At the same time Max-
well began his program of electromagnetism, Riemann had developed a
wave-equation for the electric potential.

Riemann's geometry is also the basis for general relativity, which we
neither need here nor want to discuss here.

To carry out this embedding two things besides Riemann's geometry
are needed: �rstly Michelson's and Morley's Experiment (1881) and its
interpretation by special relativity for including also inde�nite metrics
to de�ne Minkowski space and secondly Kaluza's Ansatz to place the
di�erential operators of Maxwell's equation in Christo�el symbols of a
curvature tensor. The embedding is presented here strictly by use of
only di�erential geometry (curvature tensor) with inde�nite metric and
Maxwell's equations, without knowledge from or use of General Relativity.
As a result electromagnetic energy shows to be a source for curvature, a
hint to General Relativity, but on a very di�erent path than Einstein has
gone.

Keywords: electromagnetism { special relativitiy { Minkowski space {
metric tensor { Riemannian geometry { Kaluza theory { scalar waves

1 Introduction

Riemann's geometry is a very general concept, to which Euclidean, Gaussian,
Bolyai's and Lobachevski's geometry can easily be acommodated. But his geo-
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metry is not a generalization of those geometries, because it builds up on a very
di�erent basis. Euclid started with points, lines and angles in plane wheras Rie-
mann uses n-tuples from manifolds (coordinate systems) extended by a distance
function de�ned between coordinates giving a metric.

Embedding Minkowski space and Maxwell's equations in one 5 dimensional
Riemannian space is pure mathematics and at best an asymptotic limit of a
physical model for small �elds. The intention for doing the embedding even so
is didactical: to point out the idea behind it and to extend standard literature of
classical electrodynamics [1] by a link to Kaluza theories. That the embedding
is successful is surprising and known as a miracle found by Kaluza.

With his theory Kaluza uni�ed gravitation with electromagnetism and founded
the concept force = curvature of space [2], but here we exclude General Rela-
tivity by using only Minkowski metric.

Seventy years before Kaluza, Riemann had pursued a similar trace, but
without success. He died early at the age of 40 from pneumonia. In his physical
speculations from March 1st 1853 he examined deformations of a hypothetical
liquid matter in a 3D Euclidean space. He was led to quadratic di�ertial forms,
which coe�cients were dependent not only from the 3 coordinates of space but
also of time. He got a bunch of Riemannian metrics in 3 spatial dimensions,
which he wanted to relate to propagation of gravity, light, and heat radiation,
the basic idea for unifying forces [3].

As Dedekind cited from a letter dated December 28th 1854, Riemann con-
tinued his research about connections between electricity, galvanism, light and
gravity immediately after his habilitation lecture. He wrote he easily could pub-
lish a paper about the subject and that he had reason to believe that Gauss too
had worked on the same subject for several years.

But he never published such a paper. In a letter to his brother, Riemann
reported June 26th 1854 that he dived so deep into his work on the principles of
nature that he could not get over it even during the preparation of habilitation
lecture, in which he closed with the hint "The reason for a metric in the space
we live in has to be searched in forces acting upon this space" [4].

2 Discovery with scienti�c methods

We can believe Riemann's speculations or not, but what do we really know? Sci-
ence obtains its knowledge and results by observation, experiment and math-
ematical descripton. Measurements and results build up �rst-hand a discon-
nected collection of descriptions, from which one tries to derive a more general
context or a law or a principle. Several partial laws derived from a huge base
of observations are combined to form a theory. This so called inductive method
nowadays is the basic method for researchers and research in science.
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Those basic laws found via the inductive method generalize the results of
the experiments. Through generalization the content of those basic laws is
more than the underlying facts. These basic laws allow us to derive estimated
results for planned experiments (deductive method), similar to the methods of
geometry. That those achieved new laws are correct can only be proved by
repeated experiments and their accordance with prediction.

A priori it is uncertain, whether such a deductive treatment in physics is
possible. It is still a surprising fact, that the results of experiments in the past,
the present and the future are determined by a few laws, otherwise results would
be an arbitrarily collection of disconnected facts [5].

The static laws of the three forces electricity, magnetism and gravitation
were found easily as:

Fel =
1

4��0
q1 q2

r2 Fmag =
�0

4�
~m1 � ~m2

r2 Fgrav = 

M1 M2

r2

All three consist of a product of the strengh of the two sources, multiplied by
the inverse square of the distance between the sources. This similarity at once
led to the assumption that there is some kind of link between them. Faraday
made experiments with electric charges in a gravitational �eld in the shot tower
of the houses of parliament, but could not detect any deviation [6]. He did not
�nd a way to unify electricity with gravity.

A new development started, when Oerstedt found in 1820 that moving
charges carry a magnetic �eld with them. The description of dynamical laws was
much more di�cult than those for the static laws. Interim results even seemed
to violate the principle of energy conservation. As is well known, Maxwell com-
bined the electric and magnetic �eld to one electromagnetic �eld, but with much
more complicated laws than for static �elds. Where does this complexity with
gradient, rotation and vector potential come from ?

Primarily starting from Cavendish's and Faraday's experimental results and
de�nitions Maxwell wrote down all knowledge about electricity of those days
in his book "A treatise on Electricity an Magnetism" in 1873. With his funda-
mental equations Maxwell included all experimental results of his past, but also
those of the following 20 years. It was possible to derive a wave equation from
Maxwell's equations, which was proved by Heinrich Hertz in 1888 [7]. Since
then a bunch of phenomena could be combined, because they have the same
origin, namely: electricity, magnetism, radio, micro waves, heat radiation, light,
UV, X-rays.

Historically classical electrodynamics became a compact and fully deductively
treatable domain. The whole electrodynamics can be handled deductively on
the basis of Maxwell's equations: "Maxwell's theory is the system of Maxwell's
equations", Heinrich Hertz said [8]. A discussion of these basic equations could
lead to an understanding of the phenomenon they describe. A successful con-
cept was found in the explanation by the mechanics of particle systems, as for
example the kinetic gas theory. There were several attempts to apply this con-
cept also to Maxwell's equations, but all have failed (using particles with rest
mass). That Maxwell's equations can not be explained by the mechanics of
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particle systems was a result of long lasting historical process. The searched
concept was not found.

Einstein's description of gravity was a curvature of spacetime (1915). By
extending this concept with an additional dimension, Kaluza was able to place
Maxwell's equation into the curvature of a 5 dimensional space. So this is the
concept searched for to join the three static force laws that were then known.
It has been extended by more dimensions for string theory and others [9].

As we will see later in the text, the Riemannian curvature tensor has the nec-
cessary complexity to explain the complicated dynamic laws of moving charges
and at the same time is a simple concept, just curvature of space, so there is no
need to use Occam's razor on this theory.

Before we take a look on Maxwell's equations from a new view, the basics
shall be recapulated here by the questions 1) What do we understand under
Maxwell's equations nowadays ? 2) What is the phenomenon behind them ?
and 3) How can they be placed into a curvature tensor ?

3 Maxwell's equations nowadays

A key for understanding electromagnetism was Faraday's idea of electric
and magnetic lines of forces (�eld lines), which should surround a charge or a
magnet and be extended over the whole space. Test charges or test magnets
are pulled along the course of these lines from one end to the other. The usage
of such test bodies is a way to trace these lines of forces. They should exist in
space also when there are no test charges or test magnets present in space on
which they could act. This way the lines of forces determine a force for every
point of space which gives the de�nition of a force �eld.

In Faraday's �eld theory with a short-range action an iron �ling interacts
with the lines of forces in its close proximity and not with the distant magnet.
In contrast to this Newton's law of gravity is a long-range action theory where a
force grasps directly from a mass point over a distance to the center of another
mass without saying anything about how these both masses are connected over
the distance or what is happening in the space between these two mass points.

A force �eld can be represented by assigning an arrow to each point in space
for each moment in time. The direction of the arrow corresponds to the direction
of the force and the length of the arrow corresponds to the strengh of the force.
The mathematically exact term for this is a time-dependent vector �eld.

In today's form of Maxwell's equations as developed by Hertz and Heaviside
this occurs as two time-dependent vector �elds: the vector �eld E for the electric
force �eld and the vector �eld B for the magnetic force �eld.

In a vector �eld there are points in space at which many lines of force start
and diverge from (source) and other points in which they join up and end

4



(drain). There are also lines of force which run from a point leading through
an area of space and then turn back to this point again, they follow a ringlike
shaped course (rotational �eld). Also for this there is a mathematically exact
description in vector analysis: the operators divergence (div) and rotation (curl
or rot), these both also occur in Maxwell's equations.

The divergence operator yields a positive value at points in space where
sources are located (positive charge), in accordance a negative value at points
where drains are located (negative charge) and at all other points, where the
lines of force only pass through, it yields zero (empty space). It follows that a
pure rotational �eld, in which there is neither a starting point nor an end point,
the divergence is zero everywhere (magnetic �eld without magnetic charges).

To describe the rotation operator one has to change to hydrodynamics, where
vector �elds represent the velocities of 
owing liquids (e.g. water). Putting a
cork on the surface of such a streaming liquid, the rotation operator, applied to
the speed �eld, describes the rotation of the cork on the liquid around its own
axis. Only if the cork does rotate, the rotation operator yields a value di�erent
from zero. In this point the speed �eld has a curl. This is not only the case
in a whirl, where the speed vectors build circles around the center of the whirl.
Even in a uniformly 
owing river, in which the speed of the stream decreases
from its middle to the banks, a cork will rotate, because the part pointing to the
middle is moved faster than the part pointing to the bank. Although all speed
vectors are parallel and point in the same direction, such a velocity �eld of a

owing river contains curls, because the amounts of the parallel speed vectors
vary perpendicular to their direction.

If all points of a vector �eld are known, where the divergence (sources and
drains) and curls of the vector �eld are distinct from zero, and also the strengh
of divergences and curls in these points are known, then the complete vector
�eld is determined (Helmholtz theorem) and all �eld lines can be calculated.

Now we come to answer the �rst question: Maxwell's equations describe two
coupled time-dependent vector �elds by giving their sources and curls. Then
by these 4 equations after Helmholtz's theorem both �elds are fully determined
(div E, rot E, div B, rot B).

All four equations are recalled in the following paragraph:

1. Maxwell equation, Coulomb law

Sources of the electrical �eld are electric charges. Electric �eld lines start
at positive charges and end at negative charges. The divergence of electric �eld
in a point of space is directly proportional to the electrical charge densitiy � at
that point. The factor in the law is the inverse of the dielectric constant �0.

5



div E =
�
�0

2. Maxwell equation

Magnetic �elds do not have any sources. There are no magnetic charges so
far as we know. Magnetic �eld lines often are closed curves (ringlike) without
starting nor end point. The divergence of magnetic �eld is thus in every point
of space always zero.

div B = 0

3. Maxwell equation, Faraday induction

The curl of an electric �eld at a point in space is proportional to the change
of magnetic �eld with time at this point, but in opposite direction. For example
electric �eld lines run on a ringlike course around magnetic �eld lines, when
the magnetic �eld they belong to is changing in time. A test charge running
along this �eld line earns energy (dynamo e�ect). The proportion factor is the
magnetic permeability of space �0.

rot E = ��0
@B
@t

4. Maxwell equation, Biot-Savart and Ampere

The curl of an magnetic �eld at a point in space is proportional to the change
of electric �eld E with time in this point or a current density j in this point. For
example magnetic �eld lines run on a ringlike course around an axis on which
a current is 
owing or around electric �eld lines, when the electric �eld they
belong to is changing in time.

rot B = �0j + �0
@E
@t

A coupling of both �elds E and B occurs in the 3rd and 4th Maxwell equation
for the case of time dependent �elds over their curls.

4 The phenomenon behind Maxwell's equations

Maxwell's equations specify for each electric and magnetic �eld their sources
and curls by which the whole �elds are given via Helmholtz's theorem. But as
basic mathematical laws, Maxwell's equations do not say which quantity is a
cause and which is a consequence (they do not give a causal connection between
the quantities).
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4.1 Electric and magnetic �eld are one dual entity

The cause for all electric and magnetic �elds are always charges and currents
(charges at rest and charges in motion).

A basic statement is included in the 3rd Maxwell's equation (rotE = ��0
@B
@t )

declaring two simultanously occuring e�ects always as equal (noncausal). Know-
ing that a constant circular current has a constant magnetic �eld (elementary
magnet), it says that a time-varying current has not only a time-varying mag-
netic �eld but also an electric curl �eld and both e�ects are equal simultanously
after Maxwell's 3rd equation [10].

The coupling of the �elds E and B by Maxwell's equations means, that
both appear as a dual entity. Therefore both are combined as parts of one
electromagnetic �eld with six components (3 electric and 3 magnetic) and instead
of electricity and magnetism we speak about electromagnetism (remark: now it
is clear, that the statement induction or time-variable magnetic �elds cause an
electric �eld or vice versa is wrong, both �elds occur simultanously caused by
moving charges).

4.2 Electromagnetic �eld from potentials A1 to A4
derivable

From the 2nd and 4th Maxwell's equations follows that both �elds can be derived
from potentials. Because there are no sources for magnetic �elds, from the 2nd
Maxwell's equation follows that the magnetic �eld B can be written as rotation
of another vector �eld A = (A1; A2; A3) (as constant of integration there could
be a scalar potential which gradient does not contribute here):

divB = 0 () B = rotA (1)

The three components of vector A depend on 3 coordinates r and time t
and can be written as three scalar potentials:

A1(r; t) A2(r; t) A3(r; t)

The vector potential A can be used in the 3rd Maxwell equation and we get:

0 = rotE + �0
@
@t

rotA = rot
�

E + �0
@A
@t

�
Because the term in the brackets has a curl of zero, it can be written as a

gradient of a scalar potential ' :
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E = ��0
@A
@t

+ grad'(r; t) (2)

Thus it is possible to calculate B and E also from A and '.

The electromagnetic potentials have been introduced here (in classical the-
ory) formally as helping quantities, but in other theories they are real neccessary
�elds with physical meaning (e.g. Schr�odinger-equation, QED, Proca-equation).

4.3 Equivalence to wave equation

Through choice of potentials Maxwell's equations can be ful�lled. By insertion
into the 4th Maxwell's equation we get a wave equation for the vector potential.

rot B = rot rotA = �0j� �0�0grad
@'
@t
� �0�0

@2A
@t2

rot rotA + �0�0grad
@'
@t

+ �0�0
@2A
@t2

= �0j

grad divA��A + �0�0grad
@'
@t

+ �0�0
@2A
@t2

= �0j

grad
�

divA + �0�0grad
@'
@t

�
��A + �0�0

@2A
@t2

= �0j

Because of degrees of freedom for the choice of the potentials, these can be
chosen in such a way that the term in the brackets becomes zero (Lorentz-gauge),
then

�A� �0�0
@2A
@t2

= ��0j (3)

This is the wave equation which A obeys. By insertion into the 1st Maxwell's
equation we obtain the wave equation for the scalar potential:

div
�
�@A
@t
� grad'

�
=

�
�0

�divgrad'� @
@t

divA =
�
�0

Because of Lorentz-gauge, div A can be substituted:
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�'� �0�0
@2'
@t2

=
�
�0

(4)

This is the wave equation which ' obeys. If on the right-hand sides of the
wave equations current density j and charge density � vanish, then we have
homogenous wave equations. Solutions are here propagating waves in empty
space. The equations (3) and (4) are inhomogenous wave equations.

The propagation velocity of the waves is c = p�0�0 and the square of this
being in the wave equations con�rmed light as electromagnetic waves [7], [11].

4.4. Wave velocity of light is part of coordinate systems

Even Maxwell pointed out, that these two wave equations prefer a coordinate
system at rest, that is a system in which the velocity of light is the same c in every
direction. There was no deviation in results for velocity of light (Michelson Mor-
ley 1887), even if it's source or observer were moving. This was generalized by
Einstein in special relativity (1905): it is impossible to �nd a preferred constant-
velocity coordinate system, because physical laws have the same form in every
constant-velocity coordinate system. Another coordinate transformation than
Galileo's had to be found. The only transformation which leaves light's velocity
unchanged when changing from one coordinate system to another is the Lorentz
(and Poincare) transformation, which led to Minkowski metric, in which space
and time are united in a continuum and coordinate transformations can be han-
dled like a rotation by an angle i � �. Therefore 4D distance always contains a
space and a time component and every observer measures di�erent spatial and
temporal components of distance, depending on their velocity.

In Minkowski space every vector such as velocity and force have to be written
with 4 components. So we can combine � and j to a four component current
density, with de�nitions

x4 = ict; j4 = ic�; A4 =
i
c
' (5)

both wave equations become one:

@2Ak
@x12 +

@2Ak
@x22 +

@2Ak
@x32 +

@2Ak
@x42 = �0jk k = 1; 2; 3; 4 (6)

The form of this equation in a constant-velocity system s is unchanged by
Lorentz transformation. So if we change to a system s0 moving with velocity v
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relatively to s, we immediateley can write down the equation in s0 by substituting
all xi by x0i, all Ai by A0i and all ji by j0i.

4.5 Field tensor is 4-dimensional rotation of four vector
potential

The Faraday tensor or �eld tensor is given by an equation, with which its 16
components are de�ned [5] :

Fik =
@Ak
@xi

� @Ai
@xk

with i; k = 1; 2; 3; 4 (7)

These are the partial derivatives of 4-dimensional (4D) rotation of Ai. They
also occur in 3D rotation and in the gradient, that way the Faraday-tensor con-
tains directly electric and magnetic �eld components. In Cartesian coorinates
they represent equations (1) and (2):

Bx =
@A3

@x2
� @A2

@x3
Ex = ic

�
@A4

@x1
� @A1

@x4

�
By =

@A1

@x3
� @A3

@x1
Ey = ic

�
@A4

@x2
� @A2

@x4

�
(8)

Bz =
@A2

@x1
� @A1

@x2
Ez = ic

�
@A4

@x3
� @A3

@x4

�
which were derived from 2nd and 3rd Maxwell's equation. The tensor Fik is
the 4D rotation of four vectors Ai. It can be written this way with use of the
electromagnetic �eld quantities:

F = (Fik) =

26666666664

0 Bz �By � i
cEx

�Bz 0 �Bx � i
cEy

By Bx 0 � i
cEz

� i
cEx � i

cEy � i
cEz 0

37777777775
(9)

Here we have found a physical quantity, which uni�es electric and magnetic
�eld components into one dual entity: the electromagnetic �eld tensor F.

With it we can combine the 4 Maxwell's equations into two equations:
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rotE = ��0
@B
@t

divB = 0

9=;! @F��
@x�

+
@F��
@x�

+
@F��
@x�

= 0 (10)

This so-called homogenous equation is implied by the de�nition of F through
2nd and 3rd Maxwell's equation (�; �; � = 1::4). The 1st and 4th Maxwell's
equation are combined to the so-called inhomogenous equation:

rotB = �0j + 1
c2
@E
@t

divE = �=�0

9=;! @F��
@x�

= �0j� (11)

Now we are close to the answer of the second question: The phenomenon
behind Maxwell's equations can be seen in the �eld tensor, which is written as
a 4x4-matrix (zero-diagonal, 6 �eld components) and built by 4D rotation of
four vector potential, which has its basis in the 4 source components.

4.6 Causal or retarded four vector potential is the
solution of the inhomogenous wave equation for the 4

potentials

The solutions for the inhomogenous wave equation in a piont r at time t is
mathematically:

A1 = �0

Z
V

j1
�
r0; t� jr�r0j

c

�
4�jr� r0j d3r0

A2 = �0

Z
V

j2
�
r0; t� jr�r0j

c

�
4�jr� r0j d3r0

A3 = �0

Z
V

j3
�
r0; t� jr�r0j

c

�
4�jr� r0j d3r0

A4 =
i
c�0

Z
V

�
�
r0; t� jr�r0j

c

�
4�jr� r0j d3r0

In the Integral the main terms are the sources (causes). Because points
without sources do not contribute to the integral, the integral has to be carried
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out only over the areas with sources. The source terms have a time retarding
term to take into account that a signal needs time to propagate from position
r' to position r, and also a factor of reciprocal distance. Each component of the
four vector potential is directly a result of the sources.

5 Maxwell's equations in a curvature tensor

Riemann presented his concept of geometry in his habilitation lecture. He char-
acterized it by the de�nition of points as n-tuples of numbers, a space being the
set of all points, and a metric space having a distance function between every
two points of the space. That way Riemann's geometry is completely based on
analysis, in contrast to Euclid's geometry, which starts with descriptive nomi-
nal de�nitions such as a point is something which has no parts, a line is length
without thickness, an angle is an inclination between two lines. Riemann dis-
tinguished his geometry also from Gauss's theory of curved 2D surfaces, which
need a 3D euclidean space for their de�nition, and from those non-euclidean
geometries of Bolyai and Lobatchevski.

Following Riemann's general concept we start with points P as n-tuples of a
n-dimensional manifold

P = x = (x1; x2; :::; xn) (12)

forming a curve x(t) parameterized by t from t0 to t1, which runs from starting
point P0 = x(t0) to end point P1 = x(t1):

x(t) = (x1(t); x2(t); :::; xn(t)) (13)

Between two neighbouring points with in�nitesimal di�erence in coordinates

dx = (dx1; dx2; :::; dxn) (14)

shall be de�ned the in�nitesimal di�erence in distance:

ds = F (x; dx) (15)

that means the distance depends on position x(t) and the change of coordinates
dxi(t) in the direction of the chosen path.

Riemann �rst investigated distance functions which were made from positive
de�nite quadratic forms. He supposed the next easy case to investigate would
be positive de�nite di�erential terms of 4th degree. But historically physics
demanded another agenda: special relativity led to inde�nite quadratic forms,
which are di�erences between terms of second degree, as for example x2� (ct)2,
where all points lying on the 45� diagonal (2D light cone) have zero distance
between each other (distance zero between two points does not imply that they
have the same coordinates).
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The distance as we know it from daily life shall be independent of the direc-
tion in which the curve is run through and should be summed up linearly:

F (x; k � dx) = jkjF (x; dx) (16)

To be able to de�ne the function 'amount of k' as jkj = +
p
k2 and for including

euclidean space with ds2 = dx1
2 + dx2

2 + dx2
2, it is neccessary, that F 2 has to

be a homogenous function of 2nd degree:

F 2(x; k � dx) = k2F (x; dx) (17)

and therefore F 2 is a quadratic di�erential form:

F 2(x; dx) = gij(x) dxidxj (18)

This expression has the special name fundamental quadratic form or metric
form. The length of the curve is de�ned as (summed up via integration):

s =
Z t1

t0
+
r
F 2(x;

dx
dt

)dt (19)

5.1 Metric Tensor and curvature of space

For interpretation of the terms gij dxidxj we now take a closer look at the
coordinate line ui(t0) through a point x(t), which we get by �xing all coodinates
of that point except one. For the coordinates with �xed t we write instead of
xi(t) simply xi:

u1(t0) = (x1(t0); x2; :::; xn)

u2(t0) = (x1; x2(t0); :::; xn)

:::

un(t0) = (x1; x2; :::; xn(t0))

Denoting the distance dsi between two neighbouring points on the coordinate
line ui, which have coordinate di�erence dui

dsi = +
p
F 2(x; dui) (20)

we get (because here for all j 6= i we have vanishing duj = 0):

dsi = +
p
gii(dui)2 = +

p
gii dui (21)

With de�nition:
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dr = (ds1; ds2; :::; dsn) (22)

then we get
@r
@ui

=
dsi
dui

=
p
gii Ti = ai (23)

where Ti is the unity tangent vector for ui-curve in point x(t). Herein we have
shortened pgii Ti as ai by a de�nition.

dr =
@r
@u1

du1 +
@r
@u2

du2 + ::: +
@r
@un

dun = a1du1 + a2du2 + ::: + andun (24)

We get the square of length of dr by [12]:

ds2 = dr � dr = a1 � a1du1
2 + a1 � a2du1du2 + a1 � a3du1du3

+a2 � a1du2du1 + a2 � a2du2
2 + a2 � a3du2du3

+a3 � a1du3du1 + a3 � a2du3du2 + a3 � a3du3
2

=
nP
p=1

nP
q=1

gpqdupduq where gpq = ap � aq
Now we do another decomposition of dr with untity normal vectors Ni, which
are orthogonal to a coordinate surface through x(t) de�ned by having the same
ui = const everywhere. We get such orthogonal vectors by building the gradient
of ui. Because we can not ad hoc compute the length in this direction, we de�ne
new gpq (other values indicated by upper index).

dr = ru1du1 +ru2du2 + ::: +rundun = b1du1 + b2du2 + ::: + bndun (25)

We get the length of dr again by squaring:

ds2 = dr � dr = b1 � b1du1
2 + b1 � b2du1du2 + b1 � b3du1du3

+b2 � b1du2du1 + b2 � b2du2
2 + b2 � b3du2du3

+b3 � b1du3du1 + b3 � b2du3du2 + b3 � b3du3
2

=
nP
p=1

nP
q=1

gpqdupduq where gpq = bp � bq
Both basis vector systems are so called reciprocal systems, e.g. their scalar
product is 1 :

a1 � b1 = 1
a2 � b2 = 1

:::
an � bn = 1

nP
p=1

nP
q=1

gpqgpq = 1

or with Einstein0s sumconvention gpqgpq = 1
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With it the gpq can be calculated (inverse matrix):

(gpq) = (gpq)
�1

The reciprocity of the basis vector systems on which the metric tensors are
de�ned have the following advantage: decomposing a vector A after ai and bi
we get

A = A1b1 +A2b2 + :::+Anbn
A = A1a1 +A2a2 + :::+Anan

and the amount or strenght of the vector can be computed as

j A j2=
nX
p=1

ApAp

The gpq and gpq can both be written as a matrices. Their quadratic forms
then can be generated by matrix product like (dxi)� (gpq)� (dxj). Both metric
tensors belonging to the two basis vector systems describe the same space but
are di�erent in shape, i.e. the elements in rows and columns are di�erent. Thus
the shape of a metric tensor depends on the chosen coordinate system. Looking
only on the gpq(x) we can not decide whether the space is 
at or curved. But
if it is possible to do a coordinate transformation to a Cartesian form, then the
space is 
at:

ds2 = dx2 + dy2 + dz2

The metric of the same space is in cylinder coordinates:

ds2 = d�2 + r2d'2 + dz2

which has also only diagonal non-zero elements, but they are not constant and
it can not be seen, whether the space is 
at or not. The metric of the surface
of a sphere can not be transformed to a Cartesian form:

ds2 = R2 �d#2 + sin2 #d'2�
Independently from a special coordinate transformation, another tensor can be
build from the metric tensor, namely the curvature tensor, which is exactly then
zero when the space is 
at. For calculation of the curvature tensor one has to
evaluate so-called Christo�el symbols [13], which are terms built from gpq and
derivatives of the gpq (with Einstein's summation convention):

���� =
g��

2

�
@g��
@u�

+
@g��
@u�

� @g��
@u�

�
(26)

Because of the derivatives in the expression, often many terms are zero and
the calculations become less complicated. This is also important for a special
physical application: if the �rst term of the sum in the brackets of a Christo�el
symbol is zero, then the second and third are similar to the rotation operator in
Maxwell's equations! Kaluza's idea was to use an additional dimension to the
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four used in Minkowski space, and to place electromagnetism in those additional
Christo�el symbols. Note { Christo�el symbols are not tensors.

The curvature tensor is built from Christo�el symbols and their derivatives [13]:

Rmikp =
�gmik
@up

� �gmip
@uk

+ �rik�mrp � �rip�
m
rk (27)

When this tensor is vanishing (zero matrix), then space is 
at:

Rmikp = 0 for a space without curvature:

From the curvature tensor another famous tensor can be built: the Ricci tensor,
which forms from the above tensor, when two indices are identical. Each element
of the new tensor is a sum of a diagonal, a so called trace:

Rmn = Rr mrn = gkr Rkmrn

The trace of the Ricci tensor is called curvature scalar :

R = Rmm

The Ricci tensor includes second derivatives of the metric coe�cients gpq. Be-
cause these are parts of an inde�nite metric, parts of the Ricci tensor can include
wave equations!

5.2 Choice of a speci�c metric tensor

Following Kaluza we move on to a special space with a special metric tensor,
which has the �rst four dimensions in accordance with Minkowski space and
additional a �fth linear independent basis vector.

The orthogonal coordinate lines in a system s are x, y, z, � = ict (Minkowski-
space) and ! =

p
"w with " = �1. The basis vectors for these lines are i, j,

k, l, m, all orthogonal to each other and of amount 1, giving radius vector
r = x i + y j + z k + � l + ! m. Usually coordinate lines are real, but here we
hide the signature of the metric as in Minkowski-space giving iw or w for !. A
second coordinate system s0 in this 5-dimensional space, which is reciprocal to
the �rst, has coordinate lines x0, y0, z0, � 0 = ict0, the same basis vectors from
Minkowski space, but for u0, the �fth coordinate line, a basis vector A inclined
to Minkowski hypersurface.

contravariant System

A (very small) radius vector r can be written in s as:

r = x0 i + y0 j + z0 k + � 0 l + u0 A

16



The coordinate transformation for r from inclined system s0 back to fully or-
thogonal system s is:

x = x0 + u0Ax
y = y0 + u0Ay
z = z0 + u0Az
� = � 0 + u0A�
! = u0A! ( for " = �1 : A! = iAw A2

! = �Aw A4
! = A4

w )

An in�nitesimal distance (line element) transforms from s0 to s as:

dr =
@r
@x0 dx0 + @r

@y0 dy0 + @r
@z0 dz0 + @r

@� 0 d� 0 + @r
@u0 du0

= i dx0 + j dy0 + k dz0 + l id� 0 + (i Ax + j Ay + k Az + l A� + m A!) du0

The square length of the line element is:

dr � dr = (dx0)2 + 2Axdx0du0 + (dy0)2 + 2Aydy0du0 + (dz0)2 + 2Azdz0du0
+(d� 0)2 + 2A�d� 0du0 + (A2

x +A2
y +A2

z +A2
� +A2

!)| {z }
A2

(du0)2

which is (dx0i) � (gAB) � (dx0i) with metric tensor (gAB):

(gAB) =

0BBBB@
1 0 0 0 Ax
0 1 0 0 Ay
0 0 1 0 Az
0 0 0 1 A�
Ax Ay Az A� A2

1CCCCA det gAB = A2�A2
x�A2

y�A2
z�A2

� = A2
!

covariant System

coordinate transformation from orthogonal system s to inclined system s0:

x0(x; y; z; �; !) = x� Ax
A!

!

y0(x; y; z; �; !) = y � Ay
A!

!

z0(x; y; z; �; !) = z � Az
A!

!

� 0(x; y; z; �; !) = � � A�
A!

!

u0(x; y; z; �; !) =
1
A!

!
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gradient of coordinate: rx0 = @x0
@x + @x0

@y + @x0
@z + @x0

@� + @x0
@!

A line element in reciprocal system s0:

dr = rx0dx+ry0dy +rz0dz +r� 0d� +ru0d! =
�

i� Ax
A!

m
�
dx

+
�

j� Ay
A!

m
�
dy +

�
k� Az

A!
m
�
dz +

�
l� A�

A!
m
�
d� +

1
A!

m d!

and the resulting metric tensor (gAB)

�
gAB

�
=

0BBBBBBBBBBBBBBBB@

1 + A2
x

A2
!

AxAy
A2
!

AxAz
A2
!

AxA�
A2
!

�Ax
A2
!

AyAx
A2
!

1 + A2
y

A2
!

AyAz
A2
!

AyA�
A2
!

�Ay
A2
!

AzAx
A2
!

AzAy
A2
!

1 + A2
z

A2
!

AzA�
A2
!

�Az
A2
!

A�Ax
A2
!

A�Ay
A2
!

A�Az
A2
!

1 + A2
�

A2
!

�A�
A2
!

�Ax
A2
!

�Ay
A2
!

�Az
A2
!

�A�
A2
!

1
A2
!

1CCCCCCCCCCCCCCCCA
5.3 Calculating R55 (Aw constant)

For a �rst and easy calculation let us start with basis vector products gAB
depending only on coordinates in Minkowski space, so they are independent
of the �fth coordinate (constant along a �ber). Then all derivatives after the
�fth coordinate become zero. Because all gij with i, j = 1..4 are constants of
either one or zero, also their derivatives vanish. Only the �ve gA5 are left for
derivation. In addition as another simpli�cation Aw shall be constant (Aw = 1)
and so all derivatives of Aw also are zero. Now we have 4 varying values left:
Ax, Ay, Az, At, which are tangent to Minkowski space. Aw is perpendicular to
Minkowski hypersurface and can be seen as height or thickness of a layer.

We now compute the Christo�el symbols from the reciprocal metric tensors gAB
and gAB . Small Greek indices denote numbers from 1 to 4 (Minkowski-space)
and big latin letters numbers from 1 to 5 (5D space):

�A
BC =

5X
D=1

gAD

2

�
@gCD
@uB

+
@gBD
@uC

� @gCB
@uD

�
(28)

We want to investigate the following Christo�el symbols: �5
55, ��55 und ���5 =

��5� . Lets start with �5
55. The �rst two terms in the brackets are derivations
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after u5, which shall be zero by assumption (no u5 dependency). All derivatives
of Aw and therefore of g55 vanish also:

�5
55 =

5X
D=1

g5D

2

�
@g5D

@u5 +
@gD5

@u5 � @g55

@uD

�
(29)

= 0 (30)

The same applies to ��55:

��55 =
5X

D=1

g�D

2

�
@g5D

@u5 +
@gD5

@u5 � @g55

@uD

�
(31)

= 0 (32)

For the next Christo�el symbol ���5 we �nd that the summand in the middle
is zero and also the term for D = 5. Because the �rst four dimensions belong
to Minkowski space, only the diagonal element g�� = 1 remains from the row
with g��:

���5 =
5X

D=1

g�D

2

�
@g5D

@u�
+
@g�D
@u5 � @g�5

@uD

�
(33)

=
4X
�=1

g��

2

�
@g5�

@u�
+ 0� @g�5

@u�

�
(34)

=
g��

2

0@@(�A�A2
!

)
@u�

� @(�A�A2
!

)
@u�

1A (35)

= � 1
2"A2

w

�
@A�
@u�

� @A�
@u�

�
(36)

= �1
2
" �2F�� (37)

In the last step we have substituted the brackets with the �eld tensor component
and also � = 1

Aw .

If we now calculate the Ricci-Tensor RAB [13]:

RAB = RDADB =
5X

D=1

@�DAD
@uB

�
5X

D=1

@�DAB
@uD

+
5X

D=1

5X
E=1

�
�EAD�DEB � �EAB�DED

�
(38)

with A = B = 5. So the �rst term vanishes because derviation after u5 and the
terms directly after the minus sign are zero (��55 = 0). It remains only the third
summand, where again for D = 5 and E = 5 we get zero:
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R55 =
5X

D=1

@�D5D
@u5 �

5X
D=1

@�D55
@uD

+
5X

D=1

5X
E=1

�E5D�DE5 �
5X

D=1

5X
E=1

�E55�DED (39)

=
4X
�=1

5X
�=1

��5��
�
�5 (40)

=
4X
�=1

5X
�=1

(�1
2

)"�2F��(�1
2

)"�2F�� (41)

=
4X
�=1

5X
�=1

1
4
"2�4F��F�� (42)

=
1
4
�4(E �E + B �B + S � S) (43)

R55 corresponds with the sum of static electric energy, static magnetic energy
and electromagnetic radiation energy [14].

5.4 Calculating R5� (Aw constant)

For calculation of R5� we need the Christo�el symbols from the preceeding sec-
tion and ���
 . In its sum from the �rst four summands only the term with the
diagonal element g�� remains, which is non-zero as g�5 is. Inserting, applica-
tion of product rule and omitting terms which sum is zero leads to the �nal
expression:

���
 =
5X

D=1

g�D

2

�
@g
D
@u�

+
@g�D
@u


� @g�

@uD

�
(44)

=
g��

2

�
@g
�
@u�

+
@g��
@u


� @g�

@u�

�
(45)

+
g�5

2

�
@g
5

@u�
+
@g�5

@u

� @g�


@u5

�
=

1
2

1
A2
!

�
@(A
A�)
@u�

+
@(A�A�)
@u


� @(A�A
)
@u�

�
(46)

+
1
2

1
A2
!

�
�A� @A


@u�
�A� @A�

@u


�
=

1
2

1
A2
!

�
@A�
@u�

+
@A�
@u


� @(A�A
)
@u�

�
(47)

=
1
2
"�2 (A
F�� +A�F�
) (48)
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Now we have all neccessary Christo�el symbols to write down the expressions
for the 4 values R5�. In the �rst sum the term for D = 5 vanishes, because
�5

55 is zero and in the second sum because dervivatives after u5 are zero. The
�rst sum vanishes completely because ��5� is zero for all �. The double sum over
products of Christo�el symbols is split into terms with and without D;E = 5:

R5� =
X
�

@��5�
@u�

�X
�

@��5�
@u�

+
X
�

X
�

�
��5��

�
�� � ��5�����

�
+

X
�

�
��55�5

�� � ��5��5
�5
�

+
X
�

�
�5

5��
�
5� � �5

5���5�
�

+ �5
55�5

5� � �5
5��5

55 (49)

= �X
�

@��5�
@u�

+
X
�

X
�

�
��5��

�
�� � ��5�����

�
(50)

From the eight products of Christo�el symbols only the �rst two remain. Prod-
uct seven and eight contain �5

55 which is zero, product six contains ��5� which is
zero for all � and product three contains ��55, also zero for all �. Renaming � to
� in product �ve makes it the negative of product four and their sum becomes
zero. For simpli�cation we split R5� into single sum and double sum:

R5� = S1 + S2 (51)

We now insert our results, �rst in S1:

S1 =
1
2
"�2

X
�

@F ��

@u�
(52)

which is the left side of Maxwell's source equations multiplied by �2=2. Now we
insert into S2 (for the second product � and � exchange, F�� = 0 for all �):

S2 =
X
�

X
�

1
2
"�2F�� � 1

2
"�2 (A�F�� +A�F��) (53)

�1
2
"�2F�� � 1

2
"�2 (A�F�� +A�F��) (54)

=
X
�

X
�

1
4
"2�4 [F�� (A�F�� +A�F��)� F�� A�F��] (55)

= A�
X
�

X
�

1
4
�4F��F�� (56)

= A� R55 (57)

Now we �nished the calcualation of the 5th row of the Ricci tensor given by the
special metric of section 5.2 and in detail we discuss that in the next section.
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6 Conclusion

Following the idea of embedding Minkowski space and Maxwell's equation in
a 5D Riemannian space we determined the special metric of section 5.2 by the
ten elements of the pseudo euclidean metric (because of symmetry of metric
tensors the elements in the upper right and lower left are the same), by the four
A1 to A4 and by the �fteenth element, which was set constant. The four A�
were assumed to be a solution of a homogenous wave equation, so we know that
the expression denoted as S1, which is the left hand side of Maxwell's source
equation, becomes zero (locally no sources) and we calculated the curvature of
the 5D space as R5� = A�R55 where R55 corresponds to local energy. So far
the embeding was successful.

This result means that Minkowski space is external curved in a special man-
ner, like a sheet of paper rolled up to a cylinder having still no internal curvature.
To roll up one axis (dimension) to a circle one needs two dimensions. So in four
spatial dimensions both axes of a sheet of paper can be bend externally without
causing internal curvature (similar to a torus), and in six spatial dimensions
all three axes of an euclidean cube can be bend to circles externally without
changing the internal euclidean metric [15].

Here it has to be emphasized that this embedding is pure mathematics. In
physical theories all 25 components of the Ricci tensor often are set to zero:
RAB = 0. Such a theory needs a curved 4D space for gravitation and variable
�fteenth element (Aw) to compensate the electromagnetic energy in R55 to zero.
As described by Ferrari [16] three four-dimensional equations can be derived
from the �ve-dimensional equation RAB = 0 : Maxwell-Einstein tensor equation
(gravity �eld with electromagntic energy as source), Maxwell's vector equations
of vacuum and a scalar wave equation for the �fteenth element:

R�� � 1
2
g�� R = �k2�2

2

�
F��F �

� � g��
4
F��F��

�
� 1

�
(r�r��� g��r�r��) (58)

r� ��3F��
�

= 0 (59)

r�r�� =
k2�3

4
F��F�� (60)

In the �rst of Ferrari's formulas the factor k2�2=2 plays the role of the gravity
constant 8�
. It is an open question whether the feature of a modi�able strenght
of gravity (inertia) has any meaning in reality. If this is the case, another
question will be whether �elds can reach the strength neccessary to predict
measurable e�ects.
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